Ultra-sensitive detection of minimal residual disease (MRD) through whole genome sequencing (WGS) using an Al-based error suppression model in resected early-stage non-small cell lung cancer (NSCLC)

Aaron C. Tan¹, Stephanie P.L. Saw¹, Gillianne G.Y. Lai¹, Kevin L.M. Chua¹, Angela Takano², Boon Hean Ong³, Tina P.T. Koh¹, Amit Jain¹, Van Ling Tan¹, Sunil Deochand⁴, Dillon Maloney⁴, Danielle Afterman⁵, Tomer Lauterman⁵, Noah Friedman⁴, Imane Bourzgui⁴, Nidhi Ramaraj⁴, Zohar Donenhirsh⁵, Ronel Veksler⁵, Jonathan Rosenfeld⁴, Ravi Kandasamy⁴, Iman Tavassoly⁴, Boris Oklander⁵, Asaf Zviran⁴, Wan-Teck Lim¹, Eng-Huat Tan¹, Anders J. Skanderup⁶, Mei-Kim Ang¹, Daniel S.W. Tan¹

¹National Cancer Centre Singapore, Singapore, ²Singapore, General Hospital, Singapore, Singapor

Background

- Early detection of recurrence and monitoring of MRD post-surgery is critical for clinical decision-making to tailor adjuvant therapy¹
- In early-stage NSCLC, circulating tumor DNA (ctDNA) detection is especially challenging, requiring highly sensitive and specific assays²
- C2inform³ is a patient-specific WGS approach for ultrasensitive ctDNA detection in NSCLC patients undergoing curative surgery
- The primary objective was to determine whether C2inform status (positive/negative) at the landmark timepoint (collected at first follow-up within 6 months after surgery) was associated with relapse

C2inform Assay

Figure 1. C2inform assay protocol

Study Design Study Design 18 relapse Stage IB - IIIA NSCLC Pts O Months O-6 Months 1 Year 2 Years

Figure 2. Study design

Patient Characteristics

	N (%)		N (%)
Age (median, range)	62 (46-79)	Stage	
Gender Female Male	13 (30) 30 (70)	IB II III	11 (26) 16 (37) 16 (37)
Smoking Status		EGFR mutated	21 (49)
Non-smoker Current or former	20 (47) 23 (53)	Chinese ethnicity	35 (81)
Histology Adenocarcinoma Others	34 (79) 9 (21)	Received adjuvant therapy	26 (60)
		Disease relapsed	18 (42)
		Alive at data cut-off	10 (23)

Table 1. Patient characteristics (N=43)

Association of ctDNA Detection and Relapse

Figure 3. The association of relapse with presence of ctDNA in (A) the landmark cohort and (B) the *EGFR* mutated and wild type (WT) subgroups.

ctDNA was detected (C2inform positive) in 83% of patients that relapsed (sensitivity 83%), compared to 16% that did not relapse (specificity 84%)

Landmark Cohort Patient Level Overview

Landmark cohort, n=43

Figure 4. Plasma samples from 43 patients in the landmark cohort were collected post-surgery and analyzed for the presence of ctDNA (C2inform positive). All post-surgery plasma samples are shown.

Association of ctDNA Detection and Recurrence Free Survival (RFS)

Figure 5. Association of C2inform status at landmark with relapse

Conclusions

- Using a robust patient-specific WGS implemented Albased computational platform (C2inform), the study demonstrate high sensitivity and specificity detection of MRD at the landmark post-surgery timepoint in both *EGFR* mutated and wildtype NSCLC.
- With an increasing number of therapeutic options in the adjuvant setting for NSCLC,^{4,5} an ultra-sensitive MRD assay has the potential to facilitate personalized clinical decision-making for tailoring both the need and choice of adjuvant therapies.

References

- I. Coakley et al. 2019; Clin Cancer Res 25(20):6026-34.
- 2. Pellini and Chaudhuri. 2022; *J Clin Oncol* 40(6):567-75.
- 3. Zviran et al. 2020; *Nat Med* 26(7):1114-24.
- 4. Felip et al. 2021; Lancet 398(10308):1344-57.
- 5. Wu et al. 2020; *N Engl J Med* 383(18):1711-23.

