

MON-392

Retinoic Acid Receptor (RAR) and Retinoid X Receptor (RXR) Expression in Preoperative Thyroid Tumor Samples

Joanne Lin, MD,¹ Ryan Conard, MD,¹ Whitney Sears Goldner, MD,¹ Mohammed Alshalalfa, PhD,² Yangyang Hao, PhD,² Joshua P. Klopper, MD,² Bryan R. Haugen, MD¹ 1. University of Colorado School of Medicine, Aurora, CO, USA. 2. Veracyte, Inc., South San Francisco, CA, USA.

Potential conflict of interest may exist. Refer to the meeting app.

INTRODUCTION

- Thyroid cancer will account for ~2% of all new carcinoma diagnoses in the US in 2025.³
- Approximately 40,000 new cases of thyroid cancer are diagnosed in the US each year, and ~3000 of these patients die each year.
- An estimated 5-10% of patients have advanced thyroid cancer that is unresponsive to surgical and radioiodine therapy.¹
- Retinoids influence cell growth and differentiation through retinoid receptors, retinoic acid (RAR) and retinoid X receptor (RXR).^{4-5, 7-8}
- Six major subtypes of receptor have been identified, which are encoded by separate genes (RARa, - β , - γ , and RXRa, - β , - γ).
- The RXRγ isoform is undetectable in normal thyroid and variably expressed in malignant tumors, and this receptor predicts response to retinoid treatment in cell lines.²
- A phase II trial with the retinoid bexarotene was stopped prematurely due to toxicity and low efficacy.⁶

GOAL OF THE STUDY

Hypothesis

Retinoid receptors will be differentially expressed in thyroid tumors based on (B)ethesda cytology category, Afirma GSC result, and mutational status.

METHODS

- mRNA expression of the six retinoic acid (RAR) and retinoid X receptor (RXR) isoforms was analyzed across thyroid nodules sent for Afirma testing.
- Differential expression was explored across a cohort of nodules with BIII/IV cytology and Afirma benign (GSC-B) or suspicious (GSC-S) categories, BV/VI nodules, and relative to BRAFV600E status.
- Another cohort with TERT promoter mutational status was analyzed along with expressed variant and fusion alterations as well as other genomic markers of tumor aggressiveness.

RESULTS

- RARa
- Lower expression in BV/VI vs GSC-B
- RARβ
 Lower expression in *BRAF*V600E+ tumors
- RARy
- Higher mRNA expression in GSC-S and BV/VI
- Highest expression in BRAFV600E+ tumors

- RXRa
- Lower expression in GSC-S and Bethesda V/VI samples
- Lower expression in samples with BRAFV600E mutation
- RXRβ
- No differences in expression
- RXRy
- Higher expression in GSC-S and BV/VI versus GSC-B
- Highest expression in BRAFV600E+ tumors

RARy and RXRy vs. other alterations in GSC-S & BV/VI

Expression of RAR γ and RXR γ is higher in samples with *BRAF*p.V600E compared to other alterations (p< 0.001 for all)

CONCLUSION

- RARγ and RXRγ appear to be coordinately expressed based on cytology, Afirma GSC and mutation status.
- RARγ and RXRγ expression may be driven by MAPK signaling.
- RARγ and RXRγ may be good therapeutic targets in advanced thyroid cancer.
- Future studies should evaluate the underlying mechanism of how BRAFV600E and MAPK signaling may affect RARγ and RXRγ expression.

References

1. Haugen BR. Management of the patient with progressive radioiodine non-responsive disease. Semin Surg Oncol. 1999;16(1):34-41. doi:10.1002/(sici)1098-2388(199901/02)16:1<34::aic

2. Haugen BR, Larson LL, Pugazhenthi U, et al. Retinoic acid and retinoid X receptors are differentially expressed in thyroid cancer and thyroid carcinoma cell lines and predict response to treatment with retinoids [published correction appears in *J Clin Endocrinol Metab.* 2008 Nov;93(11):4553]. *J Clin Endocrinol Metab.* 2004;89(1):272-280. doi:10.1210/jc.2003-030770.
 3. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. *CA Cancer J Clin.* 2025 Jan-Feb;75(1):10-45. doi: 10.3322/caac.21871. Epub 2025 Jan 16. PMID: 39817679.
 4. Grünwald F, Pakos E, Bender H, et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. *J Nucl Med.* 1998;39(9):1555-1558.
 5. Grüning T, Tiepolt C, Zöphel K, Bredow J, Kropp J, Franke WG. Retinoic acid for redifferentiation of thyroid cancer--does it hold its promise?. *Eur J Endocrinol.* 2003;148(4):395-402.

6. Klopper J, Kane M, Jimeno A, et al. A Phase II Trial of Bexarotene for Advanced Differentiated Thyroid Cancer. *Thyroid*. 2015;25(5):563-564. doi:10.1089/thy.2014.0399.

7. Simon D, Koehrle J, Reiners C, et al. Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma. *World J Surg*. 1998;22(6):569-574. doi:10.1007/s002689900436.

574. doi:10.1007/s002689900436.
8. Simon D, Körber C, Krausch M, et al. Clinical impact of retinoids in redifferentiation therapy of advanced thyroid cancer: final results of a pilot study. Eur J Nucl Med Mol Imaging. 2002;29(6):775-782. doi:10.1007/s00259-001-0737-6.