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INTRODUCTION
•	 The Afirma RNA-sequencing Medullary Thyroid Carcinoma (MTC) classifier, a component 

of the Afirma Genomic Sequencing Classifier (GSC), was previously validated as a reliable 
tool for preoperative identification of MTC from fine-needle aspiration (FNA) specimens.1,2 

•	 We aimed to characterize the genomic landscape of MTC identified using this classifier 
in a large real-world cohort of FNA samples. 

METHODS
•	 We retrospectively analyzed MTC positive samples by the Afirma MTC classifier in the 

Veracyte CLIA laboratory between January 2018 and June 2024. 

•	 Genomic variants identified by the Afirma Xpression Atlas (XA) were characterized.3

RESULTS

Demographic and cytologic characteristics 

•	 Among 252,510 FNA samples tested, 732 (0.3%) were classified as MTC.

•	 Median patient age was 63.2 years (IQR, 52.1-72.1) and median nodule size was 2.1 cm  
(IQR, 1.6-3.0). 

•	 On cytology, 71% (520/732) of nodules were Bethesda III or IV, 18% were Bethesda V and 
11% were Bethesda VI (Table 1).

TABLE 1.
Demographic data of MTC classifier positive thyroid nodules

Total (n=732)
Median age (yrs) [IQR] 63.2 [52.1-72.1]
Median nodule size (cm) [IQR] 2.1 [1.6-3]
Sex

Male 295 (40.3%)
Female 437 (59.7%)

Bethesda Category
III 315 (43%)
IV 205 (28%)
V 132 (18%)
VI 80 (11%)

RESULTS

Pathway expression

•	 ERK signaling activity was highest in RAS-mutated MTC-positive samples, followed by RET-
mutated and non RET/RAS MTC, with all MTC-positive groups showing greater activity than 
non-MTC Afirma GSC-suspicious samples (Figure 1).

•	 Across MTC-positive samples, RET M918T and HRAS variants were associated with the highest 
degree of ERK acritivty (Figure 2). 

Molecular characteristics 

•	 73% of MTC-positive thyroid nodules had at least one pathogenic variant identified by 
XA, most commonly in RET (53%) and RAS (19%) with no significant difference across 
Bethesda categories (Table 2).

	– Most RET alterations were in codons 918 (19%) and 634 (10%), while HRAS was the most 
frequently altered RAS isoform (15%). 

•	 Mutually exclusive oncogenic fusions were identified in 8 non-RET/RAS SNV mutated 
samples [EML4::ALK (n=1), MKRN1::BRAF (n=6), and SPECC1L::RET (n=1)]. 

•	 Additional isolated altered variants identified in non-RET/RAS samples included AKT1, 
DICER1, PIK3CA, and TP53.

CONCLUSIONS
•	 This large study reinforces the known genomic landscape of MTC. 

•	 Additionally, our findings highlight that a subset of thyroid nodules sent for Afirma GSC 
testing are unrecognized MTCs, underscoring the value of molecular testing in improving 
preoperative diagnostic accuracy.

•	 Gene expression analysis showed that ERK activity was slightly lower in RET-driven than in 
RAS-driven MTC (p=0.02), but significantly higher in both groups compared with non-RET/
non-RAS samples (p<1-10).

•	 Further study is needed to molecularly define the nearly 30% of specimens that lacked 
detectable alterations. 
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TABLE 2.
Expressed molecular variants identified by XA in MTC+ thyroid nodules

Bethesda Category
All MTC III IV V VI

Total  732 315 205 132 80
Any variant 533 (73%) 231 (73%) 151 (74%) 94 (71%) 57 (71%)
RET 388 (53.01%) 172 (54.6%) 105 (51.22%) 71 (53.79%) 40 (50%)

M918 140 (19.13%) 53 (16.83%) 37 (18.05%) 30 (22.73%) 20 (25%)
C634 74 (10.11%) 38 (12.06%) 14 (6.83%) 14 (10.61%) 8 (10%)
C609 39 (5.33%) 23 (7.3%) 10 (4.88%) 4 (3.03%) 2 (2.5%)
C630 37 (5.05%) 17 (5.4%) 10 (4.88%) 7 (5.3%) 3 (3.75%)
C618 24 (3.28%) 9 (2.86%) 11 (5.37%) 2 (1.52%) 2 (2.5%)
C620 22 (3.01%) 8 (2.54%) 6 (2.93%) 5 (3.79%) 3 (3.75%)
V804 22 (3.01%) 7 (2.22%) 13 (6.34%) 2 (1.52%) 0 (0%)
A883 10 (1.37%) 4 (1.27%) 2 (0.98%) 3 (2.27%) 1 (1.25%)
C611 8 (1.09%) 2 (0.63%) 1 (0.49%) 4 (3.03%) 1 (1.25%)
L790 8 (1.09%) 6 (1.9%) 1 (0.49%) 0 (0%) 1 (1.25%)

HRAS 112 (15.3%) 51 (16.19%) 35 (17.07%) 17 (12.88%) 9 (11.25%)
Q61 84 (11.48%) 42 (13.33%) 24 (11.71%) 13 (9.85%) 5 (6.25%)
G13 27 (3.69%) 9 (2.86%) 11 (5.37%) 3 (2.27%) 4 (5%)

KRAS 29 (3.96%) 7 (2.22%) 11 (5.37%) 5 (3.79%) 6 (7.5%)
G13 21 (2.87%) 5 (1.59%) 8 (3.9%) 3 (2.27%) 5 (6.25%)
Q61 8 (1.09%) 2 (0.63%) 3 (1.46%) 2 (1.52%) 1 (1.25%)

NRAS 1 (0.14%) 1 (0.32%) 0 (0%) 0 (0%) 0 (0%)

FIGURE 1.
ERK signaling expression activity in MTC-positive and non-MTC GSC-S samples
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FIGURE 2.
ERK signaling expression activity across MTC-positive samples
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